Technical Textiles
To Reinforce and Surface Your Products
NON WOVENS

Lightweight Reinforcements and Facings

GLASS VEILS

1. **Wet laid**

 Benefits
 - High quality aspect
 - High thermal stability
 - Rolls from 1 to 4.2 metres width

 Product range
 - From 25 to 120 g/m²
 - Reinforced or not by longitudinal yarns
 - Fibre diameter from 6 to 16 μm
 - Fibre length from 6 to 25 mm
 - Colors: white or black
 - Binders: UF or acrylics formaldehyde free

2. **Dry laid**

 Benefits
 - High softness
 - Good tear and puncture resistance
 - Rolls up to 1.3 metre width

 Product range
 - From 35 to 700 g/m²
 - Reinforced or not by longitudinal yarns
 - Fibre diameter from 13 to 16 μm
 - Fibre length: continuous filament
 - Colors: white, black, yellow or “beige”
 - Binders: melamine, latex phenolic, acrylics, and biosourced (formaldehyde free)

LAID SCRIMS

Benefits
- Good tear resistance
- Specialty coatings
- Cost-effective reinforcement

Product range
- From 5 to 50 g/m²
- Lightweight fabrics up to 5.3 m width
- Bi and tri-directional laid scrims, complexes
- Patterns: from 0.4 to 4 yarns/cm
- Fibre types: glass, polyester, aramid, carbon
- Coatings: PVOH, Acrylic, PVAc, SBR, EVA

Wet laid

Dry laid

Acoustic

Bi-directional pattern

Tri-directional pattern
WOVEN FABRICS

For Outstanding Strength

Roofing Fabrics (RECO)
- Twisted and voluminized yarns
- Plain weave pattern
- From 140 to 250 g/m²
- Rolls up to 2 m width
- PVAc binder

Open Fabrics
- Glass fibre yarns
- Half-leno pattern
- From 40 to 585 g/m²
- Rolls up to 6 m width
- Alcali-resistant coating

Glass Cloth (E-fabrics)
- Twisted glass yarns
- Plain or twill pattern
- From 80 to 660 g/m²
- Rolls up to 2 m width
- White or black color
- Acrylic coating

Texturized Fabrics (TECO)
- Texturized glass yarns
- Plain or twill pattern
- From 290 to 1300 g/m²
- Rolls up to 2 m width
- White or caramelized
- Without coating

HYBRID FABRICS

For Specific Application

TwinFab®
Benefits
- High delamination resistance
- Good strength resistance
- Wide product range

Product range
- Knitted or laid scrim fabrics laminated with PES, cellulose or glass non woven
- From 40 to 125 g/m²
- Binders: SBR, EVA or PVAc
- Rolls up to 4 m width

TwinMat®
Benefits
- High strength resistance
- Puncture and tear resistance
- Fire behaviour

Product range
- Needle punched and calendared multilayers of PES and glass non wovens
- Reinforced or not with a glass scrim
- From 150 to 300 g/m²
- Rolls up to 1 m width

Coated Fabrics
Benefits
- Waterproof coating
- Fire behaviour
- Tailor-made coatings

Product range
- Liquid paste applied on non woven or hybrid fabrics
- From 100 to 400 g/m²
- White or pigmented
- Rolls up to 1.35 m width

Open Fabrics
- Glass fibre yarns
- Half-leno pattern
- From 40 to 585 g/m²
- Rolls up to 6 m width
- Alcali-resistant coating

Glass Cloth (E-fabrics)
- Twisted glass yarns
- Plain or twill pattern
- From 80 to 660 g/m²
- Rolls up to 2 m width
- White or black color
- Acrylic coating

Texturized Fabrics (TECO)
- Texturized glass yarns
- Plain or twill pattern
- From 290 to 1300 g/m²
- Rolls up to 2 m width
- White or caramelized
- Without coating
ADFORS INDUSTRIAL FABRICS
A Complete Range of Manufacturing Processes

1. Non woven technologies

Wet laid glass veil process
Wet chopped glass fibres are dispersed in a water based solution. The solution is poured onto a moving wire mesh belt. The damp veil is then passed under a binder applicator where liquid resin binder is applied. The veil then passes through an oven to be dried.

Dry laid glass veil process
The glass fibres are produced directly from a furnace above a conveyor belt which forms the veil. The second part of the process remains similar to the wet laid in terms of binder application.

Laid scrim process
Scrim is a reinforcing fabric made from continuous filament yarns. The laid scrim manufacturing process chemically bonds the warp yarns (machine direction) and the weft yarns (cross direction) together in an open mesh structure. The construction of the laid scrim can vary between: “side by side” warp yarn, “over/under” warp yarns or tri-directional construction with weft yarns in different angles.

2. Knitting process
Three different yarn sources are used to form a fabric. There are warp (machine direction) yarns, weft (cross direction) yarns and a stitch polyester yarn that is used to tie the warp and weft yarns together.

3. Weaving process
Warp and weft yarns are woven together on a traditional weaving loom, in various patterns (primarily plain and leno weave).

4. Coating and laminating processes

Coating
A mineral or acrylic based coating is applied to a substrate. It is then dried in an oven.

Thermal lamination
Two or more layers of different products are consolidated with a liquid adhesive heated and pressed.